
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Telecommunications and Media Informatics

Enhancement of Lane Following
Functionality With Temporal Information

Integration into Deep Reinforcement
Learning

Scientific Students’ Association Report

Author:

Tibor Áron Tóth

Advisors:

Róbert Moni
Dr. Bálint Gyires-Tóth

2022

Contents

Kivonat i

Abstract ii

1 Introduction 1

2 Background 2

2.1 Modeling temporal information . 2
2.1.1 Recurrent Neural Networks 3

2.1.1.1 Vanilla Recurrent Neural Network 3
2.1.1.2 Long-Short Term Memory 4

2.1.2 Sequence to sequence . 5
2.1.2.1 Trivial case . 5
2.1.2.2 General case . 5

2.1.3 Attention . 6
2.1.3.1 Generalize attention mechanism 8
2.1.3.2 Alignment score functions 9
2.1.3.3 Categories of attention mechanisms 9

2.1.4 Transformer . 12
2.1.4.1 Gated Transformer-XL 14

2.2 Reinforcement Learning . 16
2.2.1 Foundations . 16
2.2.2 Algorithms . 19

2.2.2.1 Vanilla Policy Gradient Optimization 20
2.2.2.2 Trust Region Policy Optimization 20
2.2.2.3 Proximal Policy Optimization 21

2.3 Related work . 22

3 Research objectives 24

4 System design 25

4.1 Duckietown platform . 25
4.2 Software and hardware environment 27

5 Methods and implementation 29

5.1 Models to compare . 29
5.1.1 Convolutional Neural Network (CNN) based model 29
5.1.2 CNN with frame stacking model 30
5.1.3 CNN with LSTM model . 31
5.1.4 CNN with Transformer model 32

5.2 Training . 32

6 Evaluation and results 37

6.1 Model complexity . 37
6.2 Driving performance . 37

6.2.1 Agent trajectories . 38
6.2.2 Agent velocity . 39
6.2.3 Accuracy . 39
6.2.4 Comparison . 41

6.3 Computational demand . 42

7 Conclusions 44

8 Summary 45

Acknowledgements 46

Bibliography 47

Appendix 51

Kivonat

Napjainkban az autóipar egyik legtöbbet kutatott területe az autonóm vezetés. A
technológiai fejlesztések fő célja a teljes automatizálás elérése, ezáltal a közúti balese-
tek számának és súlyosságának csökkentése, valamint a légkör szennyezésének csök-
kentése. Ezen célok elérése érdekében fejlett vezetéstámogató rendszereket szükséges
kialakítani és fejleszteni.

A gépi tanulás, és különösen a mélytanulás, bizonyítottan hatékony megoldás-
nak mutatkozik a vezetést támogató funkciók megvalósítására. Ezt láthatjuk az ipa-
ri trendekben, akár a kamerák, radarok, lidarok jelfeldolgozását, akár a járművek
döntéshozatalát és vezérlését vizsgáljuk. Kimondható, hogy jelenleg elképzelhetetlen
lenne az önvezető járművek megvalósítása adatközpontú megoldások nélkül.

Az autonóm vezetésnél egyetlen mérés nem ad minden esetben kielégítő mi-
nőségű és mennyiségű információt, mivel figyelembe kell vennünk a járművek és a
környezet dinamikáját is. Több mintavétel együttes figyelése közvetett dinamikai in-
formációt hordozhat, amely pontosabb döntésekhez vezetheti a modellt. A környezet
ilyen állapotainak és az ezekből kiadott irányítási jeleknek a modellezésére szokvá-
nyosan konvolúciós (CNN) és rekurrens neurális hálózatokat (RNN) alkalmaznak.

Ezen dolgozat a szekvenciamodellezési képességekkel rendelkező mélytanulási
modellek teljesítményének vizsgálatáról és kiértékeléséről szól. Az összehasonlítás
során különös figyelmet kap a különböző modellek azonos környezetben, azonos kö-
rülmények között történő tanítása és tesztelése. A modellek a sávkövetési feladatra
tanítása mély megerősítéses tanulással történt, azon belül Proximal Policy Opti-
mization algoritmussal. Az ágensek a sávkövetést egy szimulációban, pontosabban
a Duckietown környezetben tanulták. A dolgozat további célja, hogy analizálja és
kiértékelje az összehasonlítások eredményeit.

i

Abstract

One of the most researched areas of the automotive industry today is autonomous
driving. The main purpose of technological developments is to achieve full automa-
tion, thereby reducing the number and severity of accidents on the road, as well
as reducing pollution on the roads. To reach this goal, advanced driver-assistance
systems (ADAS) must be created and developed.
Machine Learning, and specifically deep learning, has been proven to be an effective
solution for implementing driver assistance functions. We can see this in industrial
trends, whether we inspect the signal processing from cameras, radars, lidars or
vehicle decision making and control. Nowadays it would be unthinkable to realize
self-driving vehicles without data driven solutions.
In autonomous driving, it is ineffective to estimate from a single measurement since
we must take into consideration the dynamics of vehicles and the surrounding. Con-
sidering multiple observations means more indirect perceived dynamics, which can
lead the model to more thoughtful decisions. Modelling such states of the environ-
ment and the management signals issued from them is conventional to solved by
convolutional (CNNs) and recurrent neural networks (RNNs).
This work focuses on investigating and evaluating the performance of Deep Learning
models that have sequence modelling abilities, while adapting them to lane following
using Deep Reinforcement Learning. During the comparison, particular attention
is paid to learning and testing the different models under the same environment, in
the same conditions. The models are trained using Deep Reinforcement Learning
with Proximal Policy Optimization algorithm in a simulation entitled the Ducki-
etown gym environment. A further aim of the paper is to analyse the results of the
comparisons.

ii

Chapter 1

Introduction

Nowadays, the most supported development trend in the automotive industry is
to research and improve highly-automated or self-driving solutions. The goal is to
reduce the role and responsibility of the driver in vehicle control and to replace it
entirely by a machine eventually. It is known, that these technologies are still facing
many challenges. The algorithms must make decisions quickly and confidently in
dynamically changing environments at least as well or better than a human driver
would. The solutions raise many legal and human responsibility issues which are
still awaiting resolution. Rapid development is also made more difficult by the fact
that these solutions are required to meet many safety-critical criteria. However,
despite the difficulties, the benefits of these developments are quite positive. Au-
tonomous features offer to reduce the number of road traffic injuries which is the
leading cause of death in many countries. Also, offer an opportunity to reduce
pollution by optimizing traveling routes and vehicle driving style through smarter
algorithms or vehicle-to-vehicle and vehicle-to-infrastructure communications. One
of the most important areas for development is the improvement of the lane following
functionality, which probably offers the most benefits among all of the considered
functions.
Lane following features are required in order to achieve SAE level four and five
in autonomous driving. The functional and safety requirements at these levels are
extremely high. The performance of the existing lane following functions mainly
depends on the quality of the measured data provided by the sensors, which is
strongly influenced by the weather conditions, visibility conditions and the state of
sensor quality. A low amount or poor quality perception is directly impacts the
performance of any lane detection algorithm. This research provides a solution for
the highlighted problems and to make lane following functionality more robust and
reliable with the technique of temporal information integration. Where temporal
information integration means that instead of one, we consider and control based on
a sequence of measurements taken from the surrounding environment. This method
presumably process more information, selects adaptively the more important parts
of incoming information and predicts with more accuracy and greater certainty.

1

Chapter 2

Background

2.1 Modeling temporal information

It can be seen that in most cases it is not sufficient to simply use a single ob-
servation to predict the control signal of an autonomous vehicle. Preferably, we
have to take into consideration a collection of several past observations, in order to
provide a more refined and safer driving. Collecting and storing the various past
samples is straightforward, but processing them effectively and extract meaningful
relationships from them is more difficult.
A good practice to solve such problems is to utilize sequence modelling with recur-
rent neural networks (RNNs) from the field of machine learning. Well known RNN
architectures are for example, the long short-term memories (LSTMs), the gated re-
current units (GRUs) and the highway networks.[27] These models are able to learn
and exploit temporal information from the past, using time-series of data. However,
train these models are challenging and difficult, due to the problem of vanishing
gradients.[14] Furthermore, they are only able to receive the input sequence con-
tent in consecutive manner, i.e. the sequence can not be processed in a single step,
therefore can not be parallelized. An other interesting aspect of problem is that
which collected samples to consider and what importance should we give to them
to provide adequate prediction in the present. To take this into account, a so called
attention mechanism have started to be used on sequence to sequence (seq2seq)
models. With this extension, sequence modelling is able to consider past depen-
dencies with different importance, regardless of the time distance from the event
and the present prediction. Although recurrent networks have improved largely in
terms of learning convergence and performance, they have not been able to abandon
sequential processing[37].
Such considerations and problems led to the invention of a state-of-art architecture
called the Transformer[37] in 2017, which is based on attention mechanisms and
neglects previously used convolutions and recurrence from well-knwon convolutional
neural networks (CNNs) and RNNs.

2

2.1.1 Recurrent Neural Networks

In case of standard feed-forward networks the prediction depends only on the cur-
rent input and previous inputs are neglected. However, Recurrent Neural Networks
(RNNs) are able to take into consideration a sequence of inputs by using feedback
loops where information is flow back to the network again. This form a memory
nature for the network. Due to this particular feature of the RNN models, they are
commonly used for memory-intensive tasks as robot control, time series prediction
and natural language processing.

2.1.1.1 Vanilla Recurrent Neural Network

The architecture of standard RNN also known as vanilla RNN is simple. It is built
from three layers, namely the input, recurrent hidden and output layers. We can
represent the model enrolled in the time, as on the figure (figure 2.1). We feed the
network consecutively with xt inputs. The model calculate its hidden state, based
on weighted sum of the previous hidden state ht−1 and actual input xt. As the
result, the model predict its output, what is actually a weighted hidden state. In
the next iteration we add the next input part to the model, and it predicts the next
output. We have to mention that the hidden state is recurrently fed back into the
model from iteration to iteration, thus creating a memory nature to our network.
The iterative formula of the hidden state and the output are the followings [32].

ht = sigm(W(hx)xt + W(hh)ht−1) (2.1)
yt = W(yh)ht (2.2)

This vanilla RNN is a good example for the simplest recurrent network and for the
general operation of recurrent models.

Figure 2.1: The Vanilla RNN architecture enrolled in time.
(source: [10])

3

2.1.1.2 Long-Short Term Memory

The Long Short-Term Memory (LSTM) is an RNN model which makes much better
use of its memory and can take into account longer sequences without significant
forgetting behavior. This is achieved by introducing a new unit called memory cell
figure 2.2.

Figure 2.2: The architecture of a Long-short term memory
cell. (source: [6])

The cell introduce two distinct state vector, namely the hidden state vector ht ∈
(−1, 1)h and the cell state vector Ct ∈ Rh, where h is a hyperparameter, which
refers to the arbitrary dimension of the hidden state. These vectors are transport
the information through time, i.e. to the next iteration. The new information
is added to the network with the input vector xt ∈ Rd, where d is the length of
the input vector. The memory cell also contains an input it, a forget ft and an
output ot gate, where it, ft, ot ∈ (0, 1)h. [15] The basic concept can be likened to a
conveyor belt, where long term information runs along a chain Ct with minor linear
interventions (gating). The gates allow the LSTM to remove and add information
to the data stream flowing on the conveyor. The gating operations are formulated
as

ft = σ(Wfxt + Ufht−1 + bf) (2.3)
it = σ(Wixt + Uiht−1 + bi) (2.4)
ot = σ(Woxt + Uoht−1 + bo) (2.5)
c̃t = tanh(Wcxt + Ucht−1 + bc) (2.6)

where W ∈ Rh×d is the weight matrix of the input, U ∈ Rh×h is the weight matrix
for the recurrent connections and b ∈ Rh is the bias vector. [15][36] From this the
cell and hidden state vectors can be derived as

ct = ft ⊙ ct−1 + it ⊙ c̃t (2.7)
ht = ot ⊙ tanh(ct) (2.8)

4

2.1.2 Sequence to sequence

Sequence to sequence (seq2seq) learning is a machine learning method where our so
called seq2seq model take a sequence as an input and generate another sequence as an
output, where the input and the output length can match or differ. It is typically ap-
plied for time series prediction[20], machine translation[35], text summarization[31]
and so on. Since seq2seq models are invented in the field of language modeling,
the best practice is to introduce them on language translation tasks. This does not
mean that these solutions can not be used to implement self-driving functions, since
instead of using word embeddings as inputs, we can simply use encoded informa-
tion descriptor vectors that can carry arbitrary information, such as images from
cameras, sensor measurements and so forth.

2.1.2.1 Trivial case

In the trivial case of seq2seq learing, the input (x1, ..., xT) and the output (y1, ..., y′
T)

sequence lengths are equal, i.e. T = T ′. The model architecture for this scenario
is very simple, since we have to use only one RNN basemodel, which is introduced
before (figure 2.1). It can be seen that the length of the input and output can
not change, since the input indicates the generation of the output in the same
time step. It should be mentioned that in the field of machine translation, this
seq2seq consideration is not quite applicable, since the sentence or word length can
be different between the source and the target language.

2.1.2.2 General case

In some cases, we need different input (x1, ..., xT) and output (y1, ..., yT ′) length, e.i.
T ̸= T ′. For this purposes the previous architecture has to be replaced. The new
architecture is composed from three main, functionally different parts, namely an
encoder, a context vector and a decoder (figure 2.3). To ensure the length difference
between the ins and outs, the encoder and the decoder using two different model
[32]. In our case, based on the original research [32] we will use two LSTMs.
The encoder’s purpose is to consecutively get all parts of the input sequence into
the model and map those to a fixed-size vector representation. Inside the model, the
hidden states are being updated step-by-step through iterations and the final hidden
state is derived what is actually the mentioned fixed-size v context vector. Based
on this context vector and the previous predicted outputs, the decoder predicts the
next output. Lets note, that the decoder only starts to working after the encoder
finished, thus the decoder does not use encoder’s hidden state except the context
vector [32].
The model works with a conditional probability p(y1, ..., yT ′ |x1, ..., xT), what de-
scribes the probability of a possible output sequence in the case of the input sequence

5

Figure 2.3: Seq2seq model architecture for general case,
where input and output sequence length can be
different. (source: [18])

is given. This probability can be described with the law of total probabilities:

p(y1, ..., yT ′ |x1, ..., xT) =
T ′∏

t=1
p(yt|v, y1, .., yt−1) (2.9)

This equation in a standard LSTM-Language Model (LSTM-LM) formulation
means, that using an LSTM with a softmax activation will predict the next most
probable word given the previous predicted words and the context vector[32].
The original seq2seq with LSTM research [32] provides an input reversing trick. On
these basis, if we reverse the order of the input, the first estimated word is fall close
to the first input word in the processing chain. For example for (I, trust, you) the
translation would be (Én, bízom, benned) in Hungarian. If we reverse the input
(you, trust, I) the last hidden states (include context vector) will be calculated from
the previous hidden state and the actual (I) input. To predict the right Hungarian
word (Én), it is practical that the most relevant word is processed right before the
prediction, hence it cannot be "forgotten" by the updates of the hidden state.
We can see on the previous example, that the sequential modeling has a demand for
knowing what to pay attention to within the input sequence. This is the problem
what the attention mechanism will relieve.

2.1.3 Attention

In the field of machine learning, the attention mechanism is familiar to a simple
everyday phenomenon, such as a person’s visual perception is focusing on the in-
teresting parts of a sight or people are paying more attention to individual words
in a sentence.[38] In human life these are biological endowments, but helps us to
focus strongly on the relevant and to neglect the unnecessary information. The ad-

6

vantages are conspicuous, we are able to understand and analyze the information
more efficiently without getting overwhelmed by its amount. These benefits can be
superior in the field of machine learning, where we have a hardware with limited
computing performance. Our agents can be learn to solve tasks faster, to focus on
valuable instances of the input sequence and to describe the association between
them.
In the original study [3] the attention mechanism was demonstrated on a seq2seq
model, which using a bidirectional RNN as a decoder and a standard RNN as decoder
(figure 2.4). The bidirectional RNN has forward and backward hidden states, which
are concatenated to a common hidden state as hi =

[←−
hi ;
−→
hi

]
. The advantage of

using hidden states processed opposite directions on the input sequence is that the
encoder’s state will get information from states before and after itself [38].

Figure 2.4: Attention mechanism. (source: [3])

We are still looking for a mapping between an input and an output sequence, but
now we are indexing the encoder’s positions with i and decoder positions with t, as
follows.

X = [x1, x2, ..., xi, ..., xT] (2.10)
Y = [y1, y2, ..., yt, ..., yT ′] (2.11)

At the attention mechanism, the derivation of the decoder’s hidden state has to
be modified. We still take into consideration the previously predicted outputs,
the previous hidden state, but now we generate individual ct context vector for
each decoder position. Previously at seq2seq-LSTM models we used only one fixed-
length v context vector for the whole decoding process. The formula of the decoder’s

7

network hidden state [38]:

st = f(st−1, yt−1, ct) (2.12)

This time the ct context vector is calculated (for each decoder position) from the
weighted sum of all encoder hidden state, where the weights are the so called αt,i

attention weights [5]. The iterative equations for the context vector and the attention
scores:

ct =
N∑

i=1
αt,ihi (2.13)

αt,i = attention(xi, yt) (2.14)
αt,i = p(et,i) (2.15)
et,i = align(st−1, hi) (2.16)

The equation (2.8) is the formal representation of the method. The equation (2.9)
and (2.10) describes the details. The attention function estimates the score, what
indicates how well the compared input and output pair (yt, xi) are match with each
other. The collection of [α1,i, α2,i, ..., αM,i] controls how much the decoder takes each
encoder state into account [5].
The alignment scores (2.10) are learned by an additional feed forward neural net-
work, which built into the architecture. Its input is the encoder-decoder hidden state
pair. The align function i.e. the neural network, outputs an et,i energy score. This
is passed through the p distribution function (usually a softmax function), which
converts energy score into attention weights. This neural network with the other
recurrent parts of the model is differentiable, thus it can be trained jointly with
backpropagation algorithm [5].
The relation between (yt, xi) is described with the use of (st−1, hi). It is interesting
that the formula uses st−1, rather st. This is because in order to calculate decoder
hidden state in the actual position (2.6), we need the actual ct, but at this step only
the st−1 hidden state is available. This solution does not cause an information flow
issue, since next state st provides the yt output, based on the st−1 previous state
[3].

2.1.3.1 Generalize attention mechanism

For generalize the attention mechanisms, the following conventions are introduced.
The attention mechanism on the seq2seq architecture (figure 2.4) can be treat as a
key-value-query mapping process. The sequence of K keys (for each encoder hidden
states) are mapped (2.11) to attention weights regarding to q queries (single decoder
hidden state). Some solutions do not use or not make difference between keys and
V values [5]. In this formulation we use V values as additional inputs, but it is
denoting the same encoder hidden state, as the keys [3]. The importance of the

8

(K, V) pair will rise at transformer models, which will described later.

A(q, K, V) =
N∑
i

p(align(ki, q)) ∗ vi (2.17)

The capitalness of the K keys and V values, means there are multiple encoder hidden
states and inputs are mapped to a single q query or can referred as decoder hidden
sate.

2.1.3.2 Alignment score functions

Based on how we determine the alignment score, we can differentiate quite a few at-
tention mechanisms. For example, there are dot-product[21], general[21], additive[3],
location-based[21], scaled dot-product[37] attentions and so forth. Their alignment
functions [5][38]:

Type Equation
dot-product align(ki, q) = qT ki

general align(ki, q) = qT Wki

additive/concat align(ki, q) = VT
a tanh(Wa[q; ki])

location-based align(ki, q) = align(q)
scaled dot-product align(ki, q) = qT ki/

√
N

Table 2.1: Examples of different alignment functions for attention.

The dot-product alignment calculates the dot-product between keys and query (en-
coder hidden states and decoder hidden state). The general method introduce a
learnable W matrix, what maps the query to keys. The additive or can referred as
concat method is simply concatenate the hidden states together and adds Va, Wa

learnable weights with tanh activation function. The scaled dot-product is extended
version of the basic dot-product, where the values normalized with the root of the
keys length. This last method helps to overcome the problems of the long input
sequences, since they product small gradients with softmax activation functions.
We will find this alignment function at transformer architectures, probably because
transformers are applicable for long input sequences [5].

2.1.3.3 Categories of attention mechanisms

Attention mechanisms can be differentiated based on their number of sequences,
abstractions, positions and representations [5]. We should consider these categories
as a continuous spectrum of possible solutions, most of the time there are no strict
borders between each interdisciplinary solution. The most commonly distinguished
types are the self-, soft-, hard-, local- and global-attentions [38]. The categories that
include these more common types are discussed and elaborated below.
We allocate distinctive-attention, co-attention and self-attention by the number of
different sequence used to the mechanism. At the distinctive-attention, the key and

9

Figure 2.5: Illustrated alignment functions. (source: [17])

query states are from two different sequences. Until now we used only this type,
since we had one input sequence and a related output sequence. The co-attention
works with multiple input data and evaluate relations with scores between all input
sequences as well [5]. The self-attention is a well known mechanism where only
the input sequence is processed, in such a way that it links different positions of
the input sequence to each other, thereby it computes a representation of itself.
This way, self-attention finds influences and dependencies between input sequence
positions.
The following example (figure 2.6) shows how self-attention works on an example
sequence. In this case the items of the input are the words and the sequence is
the sentence. The red color denotes the current word and the blue color refers to
the level of memory activation or attention weight of a word [7]. As usual at the
RNNs architecture, the mechanism is getting inputs sequentially one by one. The
self-attention mechanism learns the association between the actual input word and
the past words of the sentence. We can see that when the mechanism predicts the
(chasing) word, it pays more attention to related words like (FBI) and (is).
Based on the number of the considered positions for attention function, we can
distinguish soft-, hard-, local- and global-attentions.
At the soft-attention, the mechanism takes into consideration all the hidden states of
the input sequence for determine context vector. Thus, it considers the whole input
sequence e.g. the whole sentence or the whole picture at vision transformers. This
soft weighting method makes the network differentiable, thereby for trainable with
backpropagation, but debits high computational cost. The attention of the seq2seq
model discussed so far, have used this soft-attention mechanism. The hard-attention
uses only a part of the input, which is selected by stochastic sampling. This means
that only a separated group considered in the attention function, e.g. some words

10

Figure 2.6: Self-attention applied on an example input sen-
tence. (source: [7])

in a sentence or a patch in a photo. This method decreases computational cost, but
makes the network non-differentiable what can lead into training difficulties [5].

Figure 2.7: Global and local attention mechanism. (source:
[21])

The local-attention combines the advantages of soft- and hard-attention, because
it detects an attention position or a point on the input and then places a window
around it, where it performs the attention mechanism. This results differentiability
and lower computational cost for the network [5]. As shown in the figure (figure 2.7),
the local-attention takes only a collection of hs encoder hidden states and one ht

decoder hidden state to determine at local alignment weights. The global-attention
is really similar to soft attention and their names are mostly used interchangeable
in the field of machine learning. We can see (figure 2.7) that soft/global attention,

11

rather than takes a limited collection of hs encoder hidden states, it takes all of
them for the mechanism [5].

2.1.4 Transformer

The original state-of-art transformer architecture [37] proposed in 2017. It brought
change in the way that it is able to neglect the use of complex recurrence or con-
volution of the previous sequence modelling architectures and use solely attention
mechanism with simple feed forward network modules (figure 2.8). This model still
has an encoder-decoder architecture, but it does not need to process the input se-
quence necessarily in order, thus accelerated hardware capabilities can be exploited.
It is able to learn sequence processing tasks with less complexity, while enhancing
long-time dependency acquisition easily [37].

Figure 2.8: Transformer architecture. (source: [37])

The architecture (figure 2.8) is built from a similar, but a bit different encoder
(left main blocks) and decoder parts (right main blocks). The decoder processes
the inputs into attention-based representation and identifies the information from
input sequence, which are worth to pay attention to. The decoder enquires the
information from the encoder part [39]. These parts are performed N times (i.e.
on all position of the sequence) in each prediction. This is where the transformer
really shines over the RNNs, since parallelization is possible here. As we can see,
there are smaller building blocks of the network, such as input embedding, positional

12

encoding, multi-head attention, masked multi-head attention, add&norm layer, feed
forward network, linear network and softmax activation [37].
In the case of natural language processing (NLP) the input embedding block trans-
forms the words into a representation that can be understood by computers. The
words are usually described with a single vector in the so called embedding space,
in a way that the words are close to each other in the meaning are placed close to
each other in the embedding space. This approach is appropriate, however due to
the permutation-invariant property of the attention mechanism, the model lacks of
the information about the order of the input sequence. This is causing a problem,
because words may have different meanings when they are in different parts of the
sentence. To solve this issue, the transformer architecture proposes a positional
encoding block, which modifies the values of the embeddings by the adding differ-
ent constant values to each position’s vector [37] [39]. In some cases, to use the
transformer on other types of input data, we can map the input to a vector (as an
embedding) with different techniques or networks (e.g. CNNs, auto encoders).
The multi-head attention (figure 2.9) is a key building block for transformer models.
It performs self-attention mechanisms multiple h times on the projected version of
the input in a stacked manner. The research proven that execute multiple stacked
attention on a reduced dimensional input is more beneficial, than one self-attention
mechanism on the high dimensional original input [37].

Figure 2.9: Multi-head attention. (source: [37])

At this original transformer, the set of (V, K, Q) vectors are collected into matrices
and scaled dot-product alignment function-based attention performed on them [37].

MultiHead(Q, K, V) = Concat(head1, ..., headh)WO (2.18)
,where headi = attention(QWQ

i , KWK
i , VWV

i) (2.19)

,where attention(Q, K, V) = softmax(QKT

√
dk

)V (2.20)

Encoder’s attention mechanism takes all of (V, K, Q) matrices form the previous
layer, but decoder’s attention takes the query from previous decoder layer and the
values, keys from the encoder output [37].

13

The masked version of multi-head attention is different only in its self-attention
process. The unit masks the part of the input sequence what is coming up later
than the actual position, to hide the future information from decoder. Note, that
the self-attention at RNNs (figure 2.6) is looked similar as the masked self-attention
at transformers, what is caused by the consecutive input feeding of RNN. In the
case of transformer model, the self-attention calculates weights for all positions of
the input sequence, the masked unit only for a part of the sequence [37].
The residual connections in the network transfer earlier representations into later
parts with addition and normalization. The feed forward block is a point-wise fully
connected network, thus it make the same projection on all attention vectors, which
are relate to each position.
Despite the fact that this first transformer model was a breakthrough in the field of
sequence modelling and especially for NLP uses, it was not capable to perform on
wide spectrum of use cases, such as image processing, reinforcement learning and so
on. Several new solutions proposed since then, such as Transformer-XL [9] to solve
base model’s limited attention-span, Image Transformer [24] to make it applicable
for images and Gated Transformer-XL [23] to use for reinforcement learning (RL)
scenarios.

2.1.4.1 Gated Transformer-XL

The use and train of the transformer as a decent DRL memory was not achievable
for a long time. A new state-of-art research [23] has shown that a specific variant
of transformer, called Gated Transformer-XL (GTrXL) is able to learn in deep rein-
forcement learning situations. Furthermore, in some cases, especially where longer
memory requiring environments are used, it can outperform LSTM models.
The GTrXL is built from several stacked blocks similarly as at the original trans-
former model. These blocks are apply self-attention mehcanisms on a recurrent
basis. Each block consists of a multi-head attention unit and a position-wise multi
layer perceptron (MLP). The additional features are the followings. The return side
of the residual connections are replaced with gating units and the normalization
layers are relocated. The intuition behind these changes is that multiplicative inter-
actions are more successfully stabilizing learning for different architectures is proven
[23].
We have L total number of transformer units, which are stacked. Each l-th unit
got two input source. One is an embedding E(l−1) from the previous unit, except
the first layer’s input which can be word embedding for NLP uses or a sampled
observation for RL uses. The other is a memory tensor what stores the previous
inputs and does not allows to gradients flow backward in it. These two input is
processed by a normalization and a multi-head attention, followed by a gating layer.
The solution proposes multiple variants for the gating layer, but the most successful
is the GRU unit-based one. The information flow at the second half of the unit is

14

Figure 2.10: The GTrXL architecture. (source: [23])

exactly the same, but with a position-wise MLP [23].

Y(l) = RelativeMHA(LayerNorm([StopGrad(M(l−1)), E(l−1)])) (2.21)

Y(l) = g
(l)
MHA(E(l−1), ReLU(Y(l))) (2.22)

E(l) = f (l)(LayerNorm(Y(l))) (2.23)

E(l) = g
(l)
MLP(Y(l), ReLU(E(l))) (2.24)

These prudent changes have made GTrXL capable of stabilize and speed up teaching
for reinforcement learning applications. Among the transformers the GTrXL in
general has longer-term attention span, less computational consumption and less
memory needs [39].

15

2.2 Reinforcement Learning

In the field of machine learning we distinguish three main approach of learning,
namely: supervised, unsupervised and reinforcement learning. Each of these has
advantages and disadvantages over the others. The characteristics of the problem
to be solved and the availability of the data will determine which approach is the
most appropriate for a certain problem.
In the case of supervised learning, the algorithm is trained on fully labeled dataset.
Fully labeled means that all sample from the dataset are already paired with the
information that the algorithm needs to estimate. This way, we can examine, com-
pare the algorithm’s predictions and the ground-truth labels, which information can
be used to improve our machine learning model’s problem solving ability for the
given task. Supervised learning offer solution for classification and regression type
of problems. At classification the input samples are grouped into different classes.
As simple as it sounds, it covers a wide range of modern problems, such as object
detection, semantic segmentation, and so on. On the other hand regression gives
solution to analyse relationships between dependent and independent variables. Re-
lated example problems can be temperature, salary and price predictions. Well
known models which are usually deployed for supervised learning without being ex-
haustive can be support-vector machine (SVM), decision-tree, k-nearest neighbors
(K-NN) and neural network (NN).
Unsupervised learning algorithms cluster and analyze datasets which are unlabeled,
thus these algorithms are able to learn information and derive consequences with-
out any feedback given. These algorithms are also appealing because they are not
influenced by human prior knowledge like in the case of other methods. Main prob-
lems can be clustering (samples are grouped based on their similarities and differ-
ences), association (find hidden relations between samples) and dimension reduction
(shrinks the data size while maintain its information). Some popular algorithms
which are usable for unsupervised learning are autoencoder (AE), principal compo-
nent analysis (PCA), K-means and isolation forest.
Reinforcement learning (RL) algorithms solve problems in a trial and error manner.
In general, these algorithms take action on the basis of their experiences and based
on the outcome of the taken action (which is given to the algorithm as reward or
penalty) they change their way of thinking and behavior. Unlike at other approaches,
RL algorithms do not need a classical dataset collection, since they learn and perform
in dynamic environments. This area of machine learning is still in intense research, as
it provides a solution to many industrial, robotics and control tasks without needing
to formulate how the problem should be solved. An RL agent can be practically
any machine learning model, but the realisation and formulation of the dynamic
environment and the algorithm which makes the agent learn can be quite diverse.

2.2.1 Foundations

In reinforcement learning the agent is interacting with the environment. Simply,
at every iteration the agent takes observation ot from the environment state st and

16

based on it, takes an action at. The environment shifts its state as a result of the
action taken. Based on how good is the new state to be in, the agent receives reward
rt. Based on the reward and the state the agent takes an action again. The main
goal in RL is to maximize the cumulative reward (referred as return) collected by
the agent through the iteration steps. [19][1]

Figure 2.11: Overview of the agent-environment RL loop.
(source (modified): [33])

The state is totally describe the environment, this means that the state includes all
information about the world and there is no such information which is hidden from
the state. The agent’s observation is taken from the state, it can contain all or only
the part of the information which described by the state. Based on these we can
distinguish two environment types. If the agent is able to observe the entire state
we talk about fully observed environment, but if only the the part of it, we refer to
it as partially observed environment. [1]
The possible taken actions are determined by the different environments. There
are discrete and continuous action spaces. At discrete action spaces the number of
possible moves are finite, such as the possible moves of a chess piece. At contin-
uous action spaces the available actions are described with real-valued vectors, for
example steering wheel and gas pedal angle at car driving. [2]
The brain or the logic on the basis the agent makes decisions is called policy π in
reinforcement learning context. The policy can be deterministic or stochastic. Since
in my related work and realizations I only deal with stochastic policies, I will detail
these in the following. The action is sampled from the stochastic policy as described:

at ∼ π(·|st) (2.25)

It worth to mention that the system partially presented so far is described and
modelled as a Markov Decision Process (MDP) [34]. The MDP model has the
following elements:

• state space S - set of all valid states
• action space A - set of all valid actions
• initial state s0 - a state sampled from start-state distribution ρ0(·)

17

• reward function R

• transition probability function P

With reward function we can derive the reward rt = R(st, at, st+1). With the transi-
tion probability function we can calculate the probability P (s′|s, a) of stepping into
a state s′ if the agent in the state s and take action a. Besides these, the MDP
model complies with the markov property, which describes that the transition into
a new state only depends on the previous state-action pair. [34]
As mentioned above, the only technical aim of reinforcement learning is to maximize
the expected return, in order to achieve the desired agent behaviour. To formulate
the problem we are examine a possible sequence of action-reward pairs, called trajec-
tory τ = (s0, a0, s1, a1, ..., sT , aT). If state transitions and the policy are stochastic,
the following equation is given for the probability of a trajectory:

P (τ |π) = ρ0(s0)
T −1∏
t=0

P (st+1|st, at)π(at|st) (2.26)

From this the expected return J(π) can be calculated as:

J(π) =
∫

τ
P (τ |π)R(τ) = E

τ∼π
[R(τ)] (2.27)

where R(τ) is the return calculated for a single trajectory. Here we can differentiate
two kind of return. In the case where only a fixed size window used to sum up the
rewards, we call it finite-horizon undiscounted return [1]. Which can be described
as:

R(t) =
T∑

t=0
rt (2.28)

In other case where we sum all rewards ever obtained and multiply each element
with a discount factor, we call it infinite-horizon discounted reward. It’s formula is
the following:

R(t) =
∞∑

t=0
γtrt (2.29)

where γ ∈ (0, 1) is shrinking the importance of the more distant rewards. Intuitively,
this adds a "better now than later" behaviour, which effect can optimized with the
discount factor γ. [1] Finally, the optimization problem of RL can be formulated as:

π∗ = arg max
π

J(π) (2.30)

Theoretically, if we achieve π∗ policy we will have the agent which behave in the
environment perfectly as we want it, perhaps if this desire coincides with our reward
function. In practice, for complex environments and problems we tend to use deep
learning models for RL, which together we call deep reinforcement learning. In these
setups we train our DL model to approach as close as possible the theoretical π∗

policy.

18

To better understand the algorithms that will be presented later, two function
must introduced. The value-function V (s) and advantage function A(s, a). Value-
functions are describe the expected return if the agent start act in a state or state-
action pair and then act regarding to its actual policy forever. [19] The value function
V π(s) and action-value function Qπ(s, a) can be described as:

V π(s) = E
τ∼π

[R(τ)|s0 = s] (2.31)

Qπ(s, a) = E
τ∼π

[R(τ)|s0 = s, a0 = a] (2.32)

Note that in the case of value function only the state is given. At action-value
function the first arbitrary action is given and its taken by the agent, then in both
cases the agent acts according to the fixed policy. The other relevant function is
the advantage function, what rates an action among other possible actions without
describe its goodness in an absolute manner. [1] The advantage function for a given
state and a possible action has the following form:

Aπ(s, a) = Qπ(s, a)− V π(s) (2.33)

If we want to keep it simple, the advantage function returns the expected return
difference if we deviate in the first step from the policy. In case we calculate the
advantage in a given state for a several or for all possible actions, than we can rank
and select the best action to take.

2.2.2 Algorithms

Choosing the proper algorithm is essential in reinforcement learning, since generally
this is the main logic what trains our agent. The algorithm has important tasks as
running the agent in the environment, updating agent’s policy, leading the agent
to the desired behaviour. In my work I deal with a model-free, on-policy, policy
gradient method called Proximal Policy Optimization (PPO). To give a general
overview, I will present the most common grouping and basic properties of these
categorized RL algorithms. After that, I will present policy optimization methods
in more detail.
In modern RL we can differentiate model-based and model-free algorithms, based
on whether the agent uses a model of the environment or not. Using a model-
based approach has the advantage that our agent is capable of select an action by
examine all the possibilities and their outcomes by thinking ahead. The downside of
this method that the environment model which properties identical to the original
environment is usually not available and in these cases the agent has to learn the
model by its experience. It is fair to say that model-based approaches are more
sample efficient, but model-free approaches seem to be more simple to implement,
easier to train and more likely to lead to working solutions. [13][1]
The on-policy property means that each update of the policy only relies on the infor-
mation collected with the actual policy, later policies are not used by the algorithm.
Model-based approaches can be divided into two subcategory, which are policy opti-
mization and Q-learning methods. I would like to introduce the policy optimization

19

methods which relates to my work. Policy optimization methods has the policy
πθ(a|s) defined in explicit form. The θ policy parametrization refers to that the
policy function’s output is a computable function which depends on a set of param-
eters, usually on the learnable parameters of a neural network. These methods are
execute gradient ascent on the return function J(πθ) or maximizing the approxima-
tion of the return function to optimize the policy. Moreover, policy optimization
methods often learn an approximator for the value function. [1][8] Further details
are described at each instance of policy gradient methods (2.2.2.1)(2.2.2.2)(2.2.2.3).

2.2.2.1 Vanilla Policy Gradient Optimization

The vanilla policy gradient algorithm approximates the gradient via construct an
estimator for the policy gradient and then optimize it with a stochastic gradient
descent (SGD) algorithm [1]. The pseudo code of the algorithm is the following.

Algorithm 1 Vanilla Policy Gradient Algorithm (based on [1])
1: Get initial policy parameters θ0, initial value function parameters ϕ0.
2: for k = 0,1,2,... do
3: Collect trajectories {τi} by running policy πk = π(θk) in the environment.
4: Compute reward-to-go R̂t.
5: Compute advantage estimates Ât, based on actual value function ϕk.
6: Approximate policy gradient with:

ĝk = 1
|{τi}|

∑
τ∈{τi}

T∑
t=0
∇θ log πθ(at|st)|θk

Ât (2.34)

7: Compute policy update: θk+1 = θk + αkĝk

8: Update value function parameters by regression with MSE:

ϕk+1 = argmin
ϕ

1
|{τi}|T

∑
τ∈{τi}

T∑
t=0

(Vϕ(st)− R̂t)2 (2.35)

9: end for

Other policy gradient methods are developed from this algorithm, so they use this
method analogy and alter from this via some modifications. In the following, we will
see on the improved variations that introducing slight changes to the architecture
can eliminate the problem of too big policy updates, which is the main drawback of
vanilla policy gradient optimization.

2.2.2.2 Trust Region Policy Optimization

Trust Region Policy Optimization (TRPO) updates agent’s policy with selecting
the largest possible step to improve performance, but it constraints the difference
between the old and the new policy with Kullback-Leibler (KL) divergence. The
improvement over the vanilla policy gradient is that TRPO monitors and regularizes

20

the divergence between policy distributions, rather than regularizes the difference
in parameter space. The underlying logic is that small changes in parameter space
can cause huge differences in performance, thus controlling the policy on parameter
space feature is not effective. [29][1]
The maximization of policy update and its constraint formed as

maximize
θ

Êt[rtÂt] (2.36)

subject to Êt [KL[πθold
(.|st), πθ(.|st)]] ≤ δ (2.37)

where rt(θ) = πθ(a|s)
πθold

(a|s) is the probability ratio of policy update. Note that rt(θold) =
1, i.e. the ratio is one if no changing in policy. In other conditions where the rt ̸= 1
the new policy is different from the old one, the magnitude of the difference form
rt(θold) indicates how different the new policy is.

2.2.2.3 Proximal Policy Optimization

The Proximal Policy Optimization (PPO) algorithm updates the agent policy with
a regularization, that prevents stepping too far from the previous policy. This is
beneficial since high policy updates can lead the model to unwanted policy too fast,
thus this effect can cause learning instabilities. Some algorithms use second-order
derivatives (e.g. TRPO) while PPO use first-order derivatives with simple ideas as
penalty or a use of clip function. The PPO provides same or grater results on several
benchmarks [30] with much greater simplicity than vanilla, Policy Gradient, TRPO,
and so on. [30]
As mentioned, one variant of PPO is using clip surrogate objective. This is the
simplest and seems to be the best variant of PPO. It simply clips the rt(θ) = πθ(a|s)

πθold
(a|s)

probability ratio if it would step outside the [1 − ϵ, 1 + ϵ] region, where ϵ is a new
hyperparameter. The introduced mechanism prevents too big changes on the agent’s
policy. The formula of the objective with clipping is the following:

LCLIP (θ) = Ê
[
min

(
rt(θ)Ât, clip (rt(θ), 1− ϵ, 1 + ϵ) Ât

)]
(2.38)

In order to demonstrate the operation of this loss, let’s take a look on the formula
in a given time step t. Let’s assume that rt < 1 + ϵ and rt > 1− ϵ is fulfilled, than
the objective is remains untouched related to the LCP I , i.e min function returns
rt(θ)Ât. If rt < 1 + ϵ is not satisfied, than min function returns r(1 + ϵ)Ât. In the
opposite side if rt > 1 − ϵ is not valid, than it returns r(1 − ϵ)Ât. The loss can be
visualized as the following, where we can differentiate two case based on the sign of
the advantage Ât, since it determines the slope of the loss function at the unclipped
domain. [30]
The other variant of PPO is using penalty on KL-divergence with an adaptive
penalty coefficient β [30]. The objective function takes the following form:

LKLP EN(θ) = Êt

[
rt(θ)Ât − βKL[πθold

(.|st), πθ(.|st)]
]

(2.39)

21

Figure 2.12: Objective function of PPO clip variant. (source:
[30])

In every iteration of policy update we have a prior or in the case of first iteration
an initial coefficient β. The algorithm runs several epochs of minibatch SGD to
optimize the penalized objective function. Then calculates the new coefficient β for
the next iteration, based on the following formula [30]:

β =
β/2 ,if d < dtarg/1.5

2β ,if d > 1.5dtarg

(2.40)

,where:

d = Êt [KL[πθold
(.|st), πθ(.|st)] (2.41)

dtarg = Êt [βKL[πθold
(.|st), πθ(.|st)] (2.42)

2.3 Related work

Solutions can be found in the literature which have discovered that processing tem-
poral information can improve performance in a variety of tasks. In this chapter,
different solutions will be presented which try to achieve the same improvement as
my solution, i.e. to increase the accuracy of the estimation by taking temporality
into account.
A solution [16] for lane following uses frame stacking, which is a simple trick of
stacking image-based observations along their channel dimension. The solution only
provides temporal information indirectly, but offers promising results in the Duck-
ietown environment without any recurrent network or sequence modelling. This
clever workaround is worth comparing with the other sequence model-based solu-
tions.
Dreaming with Transformers [40] proposes an effective world model-based architec-
ture, what is able to learn directly from high-dimensional inputs with the help of
latent imagination. Predictions of probable actions is projected into imagination
space with GTrXL model. The solution uses actor-critic RL algorithm to train the
network. The solution tested in DM Lab and VISTA driving simulator, making

22

this solution a good starting point for self-driving. The dreamer algorithm called
dreamer because it still can learn representation while completely detached from
source observation for a several timesteps [40]. This is an interesting advantage,
which is achievable with taking temporal information into account.
There are many algorithms we can choose from to train our agent in reinforcement
learning. Some solutions use the same model for acting in the environment and
learning from experience, while other solutions use a distributed RL setting, where
the previous tasks are divided between the learner and the actors. A common
practice in the field of distributed RL to run the learner on accelerated hardware
such as GPU and run the actors on unaccelerated hardware as CPUs [28]. The
actor-learner distillation [22] research published in 2021 and proposes efficient way
to do distributed RL training with transformers. The solution aids the problem of
actor-latency, what is actually the unwanted time delay caused by the actor slowness
on the unaccelerated hardware and the data acquisition speed from finished actors
to learner [22]. The architecture uses a GTrXL for the learner model, to utilize
transformer model’s sample-efficiency and LSTMs for actors, to maintain LSTM’s
computational-efficiency. This layout of training is a forward-looking example to
show the potentials of parallelization in the case of reinforcement learning and a
possible way to make GTrXL training more efficient.

23

Chapter 3

Research objectives

The development of a lane following function raises many problems and challenges.
In my work, I want to investigate the following concepts.
I would like to be able to train a deep neural network based agent for lane following
behavior with deep reinforcement learning. I would like to confirm that Proximal
Policy Optimization algorithm is appropriate for teaching agents in complex envi-
ronments. The outcome of all these will be a tested infrastructure in which different
solutions can be compared in a consistent and appropriate way.
If the training infrastructure works, I would like to answer the question of whether
the temporal information integration promotes the lane following functionality. If it
is possible to consider temporal information, I would like to examine the cases where
it performs better and worse. To answer these question I would like implement four
different deep neural network models and compare their abilities.
The comparison will be based on a CNN model that does not have sequence mod-
elling capabilities in its current use. The purpose of this, is to examine how time-
independent predictions perform. The other models will be hybrid models consisting
of a CNN and a sequential model in a stacked manner. In this way, the four mod-
els intended for comparison will be a CNN, a CNN with frame stacking, a CNN
with LSTM and a CNN with Transformer model. The comparison will be based
on indicators of lane following performance, model complexity and computational
demand.

24

Chapter 4

System design

Before presenting the experiments in details, I would like to describe the software
and the hardware environment I used.

4.1 Duckietown platform

Duckietown is an open-source, cost-effective and flexible platform that allows par-
ticipants to research and develop autonomous driving. It enables to pursue develop-
ment in a fully fledged, scaled-down, cheaper world while retaining the features and
effects of real world driving scenarios. These properties make it possible to observe
and practice the whole process of development in an affordable way for instructors,
students, professionals and researchers [25].
The platform consists of small vehicles (Duckiebots), cities (Duckietowns) and cit-
izens (duckies). Duckiebots are three-wheeled, DC motor-driven robots with a
monocular camera. The most recent DB21 duckiebots are equipped with Nvidia Jet-
son Nano developer kit, which even compatible for deep neural network deployment
with low power consumption in a small unit. A duckietown is easily customizable
and reproducible, since it built of modular road tiles, traffic lights and obstacles.
Universities around the world use the platform to develop and test their best and
most reliable self-driving algorithms against others. An annual competition called
Artificial Intelligence Driving Olympics (AI-DO) is offering different challenges for
participants in the duckietown system. The competition consists of a pre-selection
and a final. In the pre-selection phase the developers with the best submitted so-
lutions are picked based on duckietown’s official unified metrics. At the final phase
the qualifiers have another chance to submit their best solutions, which are evalu-
ated in real world environment called duckietown autolab. This kind of autolabs,
sometimes called robotariums can be found at Swiss Federal Institute of Technology
in Zürich (ETHZ) and at Toyota Technological Institute at Chicago (TTIC). The
winners and rankings are determined on the robot’s performance, which is described

25

Figure 4.1: Duckiebot and Duckietown real environment.
(source: [12])

with above mentioned official duckietown metrics. The most important metrics are
the followings 1.

• Survival time: The time spent on the road. If the robot runs off the road
the simulation stops.

• Major infractions: The time spent outside of the derivable zones.

• Traveled distance: The distance traveled in lane.

• Lateral deviation: The lateral deviation from right lane center.

Figure 4.2: Duckietown autolab at Zürich. (source: [11])

Competitors can compete in quite a few different challenges, where the most impor-
tant are the followings.

• LF - Lane following: Following the lane without any obstacles.
1https://challenges.duckietown.org/v4/humans/challenges/aido-LF-full-sim-

validation

26

https://challenges.duckietown.org/v4/humans/challenges/aido-LF-full-sim-validation
https://challenges.duckietown.org/v4/humans/challenges/aido-LF-full-sim-validation

• LFP – Lane Following with Pedestrians: Lane following with avoiding
duckie pedestrians.

• LFI – Lane Following with Intersections: Lane following with intersec-
tions which must be crossed by the agent.

• LFV_multi - Lane Following with dynamic Vehicles: The agent is
running on multiple duckiebot and executing lane following with the presence
of other vehicles.

• LFVI_multi - Lane Following with dynamic Vehicles and Inter-
sections: The agent is running on multiple duckiebot and executing lane
following with the presence of other vehicles and intersections.

These challenges can be evaluated in 3 different way. One of them is the validation in
simulation, where the map and output of the simulation with additional evaluation
metrics are published. An other is the test in simulation, where only the simulation
evaluation metrics are shown, the maps are hidden from participants. The more
difficult evaluations are realized in the real world at robotariums. Those who have
done well in the simulation can have their solutions evaluated in real world. Here,
the maps and the metrics are both visible.
The platform is perfect for implementing and developing agents for autonomous
driving with reinforcement learning algorithms, since as mentioned, the duckietown
environment is constructed in simulation and also in the real world. The training
and the early testing stage of the agent is usually realized in simulation, since this
way it takes less time, money cost and effort. The real-world testing is generally the
final stage of the development, to test the promising agents in action.

4.2 Software and hardware environment

To train the hybrid model in a reinforcement learning setup I used the open-source
Ray framework2. The framework consists of several sub-libraries, such as Ray Tune
(hyperparameter search library) or Ray Train (distributed deep learning library).
One of them is Ray RLlib, as its name suggests it is a reinforcement learning li-
brary, which offers predefined RL algorithms, distributed RL capabilities, simple
API and much more. Fortunately, it easily handles custom environment and gym
environments, such as duckietown simulator. Since my solution required custom
model build and fully adjustable CNN architecture to investigate the agent perfor-
mance in case of architectural changes, I implemented a custom CNN model as a
part of the architecture in PyTorch framework with the help of RLlib’s TorchV2
model class.
I ran all of my experiments on an Nvidia DGX station which has Ubuntu 18.04 LTS
operation system, 4 Tesla V100 32GB GPUs, 40 Intel Xeon CPUs. I tried extensive
hand-tuned hyperparameter configurations with one GPU and ten CPU per agents.

2https://docs.ray.io/en/latest/index.html

27

https://docs.ray.io/en/latest/index.html

For hyperparameter search I ran 2 simultaneous agent threads per experiment with
a reduced number of CPUs (5 per agents) for better paralellization.
For my experiments I used two different logger framework. Since the default one of
the Ray framework is Tensorboard, I used it from the very beginning of my works.
The disadvantages (e.g. local running on the host machine, difficult to categorize
runs) led me to use Weights & Biases (WandB) framework, which is intuitive, cloud-
based logger framework with includes hyperparameter optimization (called sweep)
and report creation tools.

28

Chapter 5

Methods and implementation

I trained various models using reinforcement learning in the Duckietown environ-
ment. The aim was to get the best possible lane following behavior from each model,
which was achieved by significant amount of hyperparameter optimization with the
help of Ray and WandB frameworks. I evaluated and compared the performance of
the best trained models in the Duckietown simulator. Based on the results, I have
drawn the consequences about the applicability of each model for lane-following
functionality.

5.1 Models to compare

The basic concept of comparing model architectures with different sequence mod-
elling capabilities are came from the requirement that we may need to reasoning
over a time span to enhance more performance and safety for autonomous driv-
ing. I chose the different architectures to cover as much of the range of temporal
information processing capability as possible, according to the literature.
One of the difficulty of the problem is that most of the sequence modelling solutions
are capable for supervised learning, but they are not applicable for reinforcement
learning. The other complication is that sequence to sequence models are mostly
used in the field of NLP, thus they destine sequence of embedding, which are vectors
or scalars, but in our case the observations are tensors of camera frames captured
by the duckiebot.

5.1.1 Convolutional Neural Network (CNN) based model

I would like to introduce the architecture of the CNN model, which has no sequence
modelling capabilities in this setup. The used Proximal Policy Optimization required
to define the model (figure 5.1) in an actor-critic structure. I implemented it as a
custom torch model into RLlib to serve as a baseline, while preserving its modularity
for later architectural modifications.
I built a custom torch CNN (figure 5.1) as mentioned in an actor-critic or sometime
referred as policy-value architecture. It built from two models, which are actually

29

Figure 5.1: The baseline CNN model in detail.

defined as two separate branch with common input, but with distinct weights and
outputs. Both branch are built from slimConv[26] convolution layers, which are
boost performance of the network by decreasing channel redundancy.
This architecture is created based on the default RLlib vision model, which is a
generally appropriate network for various partially observable environments with
visual observations. I find it an interesting and useful practice to not to use an MLP
head on the top of the branches, rather applying a convolution with a kernel size
identical to the dimensions of the previous layer’s channels. This way we can achieve
the same result in dimension reduction, but depends on the situation we can have
less learnable parameters for our network.
The framed "baseline CNN" component provides the foundation for all models which
I will use in for the comparison. Later, only the input and the post-processing (fully-
connected layer in this case) will be changed to fit in to the new architectures.

5.1.2 CNN with frame stacking model

This model is using the same architecture as CNN model (5.1.1), except that it
receives 5 stacked images at its input. The 5 images with dimension of (84× 84× 3)
are stacked over the channel dimension, i.e. the input dimension is (84× 84× 15).
This is a one step ahead addition to reach dynamics and temporal information.
However, this workaround does not considered as sequence modelling. It may re-
ceive information about the past, but it cannot treat the input as a time-dependent
sequence, since the stacked observations are fed to the network all together without

30

Figure 5.2: The data flow of frame stacking with CNN.

distinction over time. This means that the network may experience that all the
pictures were taken at one particular moment. Furthermore, the number of frames
to be stacked while still converging is limited to a few, while sequence models are
capable to consider longer spans (like in my experiments 64 observations or way
more above it).

5.1.3 CNN with LSTM model

Motivated on several sequence model aided RL solutions [4][40], I applied the base-
line CNN as an encoder unit on the incoming camera frames. The CNN encoder in
my solution maps each camera image to a latent vector. The encoder part does not
provide temporal information, it only transforms our input to a more manageable
representation, while adds more complexity and capability to the network via its
learnable weights, see on figure 5.4.

Figure 5.3: The CNN-LSTM hybrid model architecture.

I picked the LSTM for sequence modelling, since it is a widely used architecture for
this purposes. I choose the input sequence length to be 64 for the LSTM, thus this
much past observation are considered by the model. In the case of LSTM, this is
done so that the Backpropagation Through Time (BPTT) process only performed
on the previous 64 states, the older ones are truncated.

31

5.1.4 CNN with Transformer model

The final architecture utilizes a state-of-art model GTrXL with attention-mechanism
and sequence modelling abilities. Based on previous researches [4][40][22], my choice
fell on the GTrXL model, since this is the only transformer model which can stabilize
learning in RL setup.

Figure 5.4: The CNN-GTrXL hybrid model architecture.

The pipeline is same as at the CNN-LSTM model, but the LSTM is changed with
GTrXL model (figure 5.4). The input sequence length is also 64. Additionally, the
model applies a memory feedback which stacks the past observations and adds them
back to the input.

5.2 Training

I trained all the agents in the Duckietown environment. I have endeavoured to pro-
vide identical conditions in all aspect for each model. The simulation environment
proprieties, the software and the hardware configurations were same for all trainings.
Only the PPO specific and model specific parameters were optimized to achieve the
best lane following behavior with each model.
The map set I used consists of the following eight tracks.

32

Figure 5.5: The top-down view of all maps, which are used
for training.

The Duckietown simulator implemented as a gym environment, thus I could define
and manipulate its behavior via wrappers. Such wrappers can be defined for obser-
vations, actions and rewards. In my solution, I did not use the original wrappers of
Duckietown environment, but an improved version of them from an open-source so-
lution [16] of my university colleague. In my solution the used observation wrappers
are preprocessing the frames taken by the agent with image cropping, image resizing
and image normalization. The action wrappers are transform the model output to
wheel velocities of the duckiebot agent. While reward wrappers are giving rewards
based on agent heading angle and velocity.
I started trainings with my best prior guess for initial hyperparameters and I only
performed a rough learning rate optimization with deploying some single runs for
all models. As the next step, I optimized RL and PPO specific hyperparameters
with grid search on every model to reach the maximum episode reward mean. The
hyperparameter space is stretched by the variations of the following parameters:
ppo clip, gamma, lambda and gradient clip. I would like to introduce the results of
the CNN and CNN-GTrXL models.

33

(a) CNN

(b) CNN with GTrXL

Figure 5.6: Hyperparameter optimization results for RL and
PPO specific parameters. In this case, the par-
allel coordinates plot shows, how much episode
reward mean is achieved for the end of the train-
ing for each individual hyperparameter selection.

As figure 5.6 shows, the GTrXL model has learned better with parameters that are
not yet completely tuned. The experiment was also performed for the CNN with
frame stacking and for the CNN with LSTM model. I found that the baseline CNN
and the frame stacked version needed similar RL and PPO specific parameters. Also,
the LSTM and GTrXL versions needed the same parameters. Lastly, I performed
fine learning rate tuning for each model.

34

(a) CNN (b) CNN with frame stacking

(c) CNN with LSTM (d) CNN with GTrXL

Figure 5.7: The results of fine tuning learning rate.

With the best hyperparameters the final models are trained for 2 million steps to
ensure that we give the agents enough steps to learn and that we do not stop trainings
too soon. We continuously checkpoint the model states with the maximum episode
reward mean and at the end of the training we restore the best checkpoints. These
models are used for the the evaluation and comparison.

35

Figure 5.8: The final trainings with the best hyperparameters
for 2 million steps.

36

Chapter 6

Evaluation and results

I evaluated the performance of the four different models from several perspectives
such as model complexity, driving performance and computational demand. The
evaluations were done on two self-made test track that the agents had never seen
during the training process.

6.1 Model complexity

The number of total and learnable parameter is a common used indicator for model
complexity. In this work the CNN has the fewest and hybrid sequence models have
the most parameters. I have chosen the LSTM and GTrXL model settings to have
the same number of parameters so we can compare them more accurately.

Table 6.1: The number of parameters of different models.

CNN CNN
with frame stacking

CNN
with LSTM

CNN
with GTrXL

number of
total parameters 2.006M 2.031M 6.641M 6.639M

number of
learnable parameters 2.006M 2.031M 6.641M 6.639M

6.2 Driving performance

The driving performance comparison of the models was evaluated with the help
of the official metrics of Duckietown platform and on some reinforcement learning
specific indicators. I used two test tracks, one easier with mostly straight parts and
a harder which has more curvy parts. All the agents started in the same position
with the same pose and they got 20 seconds to act in the environment.

37

6.2.1 Agent trajectories

The top-down view visualization of the agent trajectories during the test simulations
on the easy map can be seen on figure 6.1 and for the hard test map on figure 6.2.
Also, a video is made from the related trials of the evaluation 1. The agents are
started the trials from the bottom-right and they were driving upward from the
perspective of the diagram.

(a) CNN (b) CNN with
frame stacking

(c) CNN with
LSTM

(d) CNN with
GTrXL

Figure 6.1: Agent trajectories1 on the easy test track.

(a) CNN (b) CNN with
frame stacking

(c) CNN with
LSTM

(d) CNN with
GTrXL

Figure 6.2: Agent trajectories1 on the hard test track.
1https://youtu.be/xZV_Txv8nx8

38

https://youtu.be/xZV_Txv8nx8

6.2.2 Agent velocity

The agent velocity shows the different agent velocities during the evaluation. It
is noticeable that the velocities are continuously changing and transients are also
observable, this is because there is no fixed speed or only heading angle control,
rather we control the two DC motor of the robots. In this way, the simulation
models the motion by taking the dynamics into account.

(a) On easy map.

(b) On hard map.

Figure 6.3: Agent velocities during the evaluation.

6.2.3 Accuracy

The lane following accuracy is measured in heading deviation and in lane center
deviation directly. Also, have to mention that in later statistics, one part of the
cumulative reward added from these properties indirectly.

39

The heading deviation from the correct direction in every timestamp indicates how
well the agent aiming the right direction during the evaluation (figure 6.4). Fur-
thermore, the centerline deviation shows the distance difference from the right lane
center (figure 6.5).

(a) On easy map.

(b) On hard map.

Figure 6.4: Heading deviation of each agent during the eval-
uation.

40

(a) On easy map.

(b) On hard map.

Figure 6.5: Deviation from right lane center of each agent
during the evaluation.

6.2.4 Comparison

As can be seen, the measurements shown above are the result of only one experiment.
For the final analysis, I started each model from ten different locations on both the
two test map and I recorded the metrics all along the way. The results of these
measurements are summarized in table 6.2.

41

Table 6.2: Summary of driving performance indicators.
(The metrics are represented in mean±2·standard deviation format.)

CNN CNN
with

frame stacking

CNN
with

LSTM

CNN
with

GtrXL
cumulative
reward[-]

easy 233.2± 24.4 441.7± 31.2 473.6± 12.8 461.4± 9.1
hard 129.5± 159.7 406.9± 50.1 504.5± 19.1 500.8± 24.0

heading
deviation[◦]

easy 4.61± 0.57 2.18± 0.34 1.05± 0.08 1.06± 0.16
hard 2.63± 3.24 3.36± 0.67 2.17± 0.18 2.11± 0.18

centerline
deviation[m]

easy 1.62± 0.10 0.76± 0.14 0.76± 0.02 0.76± 0.02
hard 0.80± 0.96 0.86± 0.16 0.71± 0.04 0.62± 0.02

speed[m
s] easy 0.48± 0.01 0.50± 0.01 0.42± 0.01 0.49± 0.02

hard 0.48± 0.01 0.46± 0.01 0.41± 0.01 0.42± 0.01
in wrong
lane[s]

easy 2.06± 1.32 0.00± 0.00 0.00± 0.00 0.00± 0.00
hard 2.22± 4.42 0.25± 1.00 0.00± 0.00 0.00± 0.00

driven
distance[m]

easy 8.90± 1.43 10.02± 0.16 8.49± 0.13 9.95± 0.30
hard 4.96± 6.00 8.97± 0.52 8.18± 0.13 8.36± 0.20

driven lane
distance[m]

easy 8.19± 0.80 9.97± 0.13 8.47± 0.12 9.93± 0.30
hard 3.98± 4.52 8.81± 0.54 8.14± 0.12 8.32± 0.18

The 20 seconds long measurement time with 30 step/sec frame rate means 600
maximum environment step for the evaluation. The cumulative reward (also called
return) R = ∑600

t=0 rt is the summed up reward for all of these 600 environment step.
This shows how well the agent performs in regards to reward functions, which
The mean speed, the in wrong lane and the driven distance indicators are straight
forward, but worth to mention that the driven lane distance shows how far the
agent has travelled in the direction of the lane. In other words, this is the effective
travelled distance.

6.3 Computational demand

Most of the real-world applications require fast inference time from the algorithm.
This applies even more to autonomous driving, where the decision must be made in
a split of a second. Also high computational demand and inference time can cause
anomalies and unreliable control in these systems. At machine learning models the
inference time is meaning the time for the trained model to predict an output.
I measured the inference and the environment step time during each evaluation.
Valuable information can be obtained by observing the mean of collected time mea-
surements. The results are summarised in the following table 6.3.

42

Table 6.3: Summary of inference times.
(The metrics are represented in mean±2·standard deviation format.)

CNN CNN
with frame stacking

CNN
with LSTM

CNN
with GtrXL

inference
time [ms]

easy 5.95± 0.10 7.68± 0.12 6.86± 0.15 27.69± 0.20
hard 5.98± 0.21 7.66± 0.15 6.87± 0.07 27.76± 0.83

43

Chapter 7

Conclusions

The statistics of the evaluation show that every investigated model has different
lane following performance. The considered tasks, aspects and metrics are high-
lighted some relevant properties of each model. The outline of the most significant
conclusion based on the comparison of the four different architectures:

• Temporal information improves driving performance. All models
which are took into consideration more observation or states were driving
more robust with higher lane following accuracy and earned twice or thrice as
much cumulative reward as the simple CNN.

• CNN with GTrXL model gives more performance especially in hard
tasks. On both easy and hard maps the GTrXL variant had the best heading
deviation and centerline deviation results. Also, with even that good lane
following accuracy it driven the longest absolute and effective distances and
had higher mean robot speeds than LSTM variant. Also a logical behavior
is noticable at this model, that its robot speed was dynamic, i.e. the agent
accelerated at straight parts even more, see figure 6.3a.

• The LSTM and GTrXL hybrid model variants are outperform the
other variants, in almost every metrics. The only aspect where other models
performed better was the robot speed which meant sacrificing accuracy for
them (table 6.2).

• The CNN model without temporal information was not able to per-
form the tasks in an acceptable way. The lost trajectory at figure 6.2a or
low cumulative reward with high deviation at table 6.2 are indicates the un-
reliability of the model predicitions in a complex, dynamic dominated task as
lane following. Also, the unintentionally spent time in the wrong lane indicator
ought to be zero in autonomous driving.

• Inference time of GTrXL variant is much higher. The extra accuracy
and learnability are required five times higher inference time. The good al-
ternative can be to apply the LSTM variant, which has same 6.6M learnable
parameters (table 6.1) and its inference time is only a few milisencond higher
than simple CNN’s (table 6.3).

44

Chapter 8

Summary

The aim of the work was to find proper solution for temporal information integration
into deep reinforcement learning to improve lane following functionality.
The applicable model architectures, such as recurrent neural networks, sequence
models, transformer models are investigated in the first part of the work. This is
followed by a literature review of reinforcement learning, with a particular focus on
Policy Gradient algorithms. During the experiments, there are four different archi-
tectures, such as CNN, CNN with frame stacking, CNN with LSTM and CNN with
GTrXL were trained for lane following with reinforcement learning in the virtual en-
vironment of Duckietown platform. The sensitive reinforcement learning and model
specific parameters were extensively searched via hyperparameter optimization. All
the four trained policies evaluated and compared based on driving performance,
model complexity and computational demand. The work showed that utilize mem-
ory behavior with hybrid sequence models can outperform feed-forward models with
time-independent predictions in lane following task.
The work presented in this paper is complete. Although, like everything else, it can
be further developed. My thoughts about the future works are the followings.
Adapting agents from simulation to real life can be challenge, where the diverse en-
vironment and the hardware capabilities are limiting the performance of the agents.
It would be interesting to investigate how hybrid sequence models can adapt to
real world with the techniques of domain randomisation, dynamic randomisation or
model quantization.
Also, the Duckietown infrastructure itself offers many challenges with more complex
tasks, such as lane following with other vehicles or lane following with intersection
crossing task. Evaluate the performance of models with temporal information pro-
cessing in more complex tasks would certainly beneficial.
A future plan can be to examine the behavior of recurrent and transformer mod-
els with even longer past sequences. In these setup, the effect of the attention-
mechanism presumably would be much more significant.

45

Acknowledgements

I would like to thank both of my supervisors, Dr. Bálint Gyires-Tóth and Róbert
Moni for their support during the research. I am grateful for Bálint’s professional
insights that helped me a great amount in creating better documentation and main-
taining the progress of the work throughout the semester. I feel thankful to Róbert,
who introduced me the world of reinforcement learning years ago. Since then, he
supported this research and my way of progress with professional advices and kind
personal help at any time.
Also, the research presented in this work has been supported by the PIA Project,
a collaboration project between Budapest University of Technology and Economics
and Continental AI Development Center with the goal of supporting students’ re-
search in the field of Deep Learning and Autonomous Driving.

46

Bibliography

[1] Joshua Achiam. Spinning Up in Deep Reinforcement Learning. 2018.

[2] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony
Bharath. Deep reinforcement learning: A brief survey. IEEE Signal Processing
Magazine, 34(6):26–38, 2017.

[3] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural ma-
chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473, 2014.

[4] Andrea Banino, Adrià Puidomenech Badia, Jacob Walker, Tim Scholtes, Jovana
Mitrovic, and Charles Blundell. Coberl: Contrastive bert for reinforcement
learning. arXiv preprint arXiv:2107.05431, 2021.

[5] Sneha Chaudhari, Varun Mithal, Gungor Polatkan, and Rohan Ramanath. An
attentive survey of attention models. ACM Transactions on Intelligent Systems
and Technology (TIST), 12(5):1–32, 2021.

[6] Keqiao Chen. Apso-lstm: an improved lstm neural network model based on
apso algorithm. In Journal of Physics: Conference Series, volume 1651, page
012151. IOP Publishing, 2020.

[7] Jianpeng Cheng, Li Dong, and Mirella Lapata. Long short-term memory-
networks for machine reading. arXiv preprint arXiv:1601.06733, 2016.

[8] Po-Wei Chou, Daniel Maturana, and Sebastian Scherer. Improving stochastic
policy gradients in continuous control with deep reinforcement learning using
the beta distribution. In International conference on machine learning, pages
834–843. PMLR, 2017.

[9] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and
Ruslan Salakhutdinov. Transformer-xl: Attentive language models beyond a
fixed-length context. arXiv preprint arXiv:1901.02860, 2019.

[10] Mohit Deshpande. Recurrent neural networks for language model-
ing. URL https://gamedevacademy.org/wp-content/uploads/2017/10/
Unrolled-RNN.png.webp. Accessed: October 29, 2022.

[11] Duckietown. Research using duckietown, . URL https://www.duckietown.
org/research/guide-for-researchers?doing_wp_cron=1667052787.
5364470481872558593750. Accessed: October 29, 2022.

47

https://gamedevacademy.org/wp-content/uploads/2017/10/Unrolled-RNN.png.webp
https://gamedevacademy.org/wp-content/uploads/2017/10/Unrolled-RNN.png.webp
https://www.duckietown.org/research/guide-for-researchers?doing_wp_cron=1667052787.5364470481872558593750
https://www.duckietown.org/research/guide-for-researchers?doing_wp_cron=1667052787.5364470481872558593750
https://www.duckietown.org/research/guide-for-researchers?doing_wp_cron=1667052787.5364470481872558593750

[12] Duckietown. Duckietown and the ai driving olympics., . URL https://www.
aeapolimi.it/en/duckietown/. Accessed: October 29, 2022.

[13] Jan Gläscher, Nathaniel Daw, Peter Dayan, and John P O’Doherty. States
versus rewards: dissociable neural prediction error signals underlying model-
based and model-free reinforcement learning. Neuron, 66(4):585–595, 2010.

[14] Alex Graves. Long short-term memory. Supervised sequence labelling with
recurrent neural networks, pages 37–45, 2012.

[15] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[16] András Kalapos, Csaba Gór, Róbert Moni, and István Harmati. Sim-to-real
reinforcement learning applied to end-to-end vehicle control. In 2020 23rd Inter-
national Symposium on Measurement and Control in Robotics (ISMCR), pages
1–6. IEEE, 2020.

[17] Raimi Karim. Attn: Illustrated attention. URL https://
towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3.
Accessed: October 29, 2022.

[18] Simeon Kostadinov. Understanding encoder-decoder sequence to sequence
model. URL https://towardsdatascience.com/understanding-encoder-
decoder-sequence-to-sequence-model-679e04af4346. Accessed: October
29, 2022.

[19] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with
deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

[20] Benjamin Lindemann, Timo Müller, Hannes Vietz, Nasser Jazdi, and Michael
Weyrich. A survey on long short-term memory networks for time series predic-
tion. Procedia CIRP, 99:650–655, 2021.

[21] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective
approaches to attention-based neural machine translation. arXiv preprint
arXiv:1508.04025, 2015.

[22] Emilio Parisotto and Ruslan Salakhutdinov. Efficient transformers in reinforce-
ment learning using actor-learner distillation. arXiv preprint arXiv:2104.01655,
2021.

[23] Emilio Parisotto, Francis Song, Jack Rae, Razvan Pascanu, Caglar Gulcehre,
Siddhant Jayakumar, Max Jaderberg, Raphael Lopez Kaufman, Aidan Clark,
Seb Noury, et al. Stabilizing transformers for reinforcement learning. In Inter-
national Conference on Machine Learning, pages 7487–7498. PMLR, 2020.

[24] Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer,
Alexander Ku, and Dustin Tran. Image transformer. In International Confer-
ence on Machine Learning, pages 4055–4064. PMLR, 2018.

48

https://www.aeapolimi.it/en/duckietown/
https://www.aeapolimi.it/en/duckietown/
https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3
https://towardsdatascience.com/attn-illustrated-attention-5ec4ad276ee3
https://towardsdatascience.com/understanding-encoder-decoder-sequence-to-sequence-model-679e04af4346
https://towardsdatascience.com/understanding-encoder-decoder-sequence-to-sequence-model-679e04af4346

[25] Liam Paull, Jacopo Tani, Heejin Ahn, Javier Alonso-Mora, Luca Carlone,
Michal Cap, Yu Fan Chen, Changhyun Choi, Jeff Dusek, Yajun Fang, et al.
Duckietown: an open, inexpensive and flexible platform for autonomy educa-
tion and research. In 2017 IEEE International Conference on Robotics and
Automation (ICRA), pages 1497–1504. IEEE, 2017.

[26] Jiaxiong Qiu, Cai Chen, Shuaicheng Liu, Heng-Yu Zhang, and Bing Zeng. Slim-
conv: Reducing channel redundancy in convolutional neural networks by fea-
tures recombining. IEEE Transactions on Image Processing, 30:6434–6445,
2021.

[27] Hojjat Salehinejad, Sharan Sankar, Joseph Barfett, Errol Colak, and Shahrokh
Valaee. Recent advances in recurrent neural networks. arXiv preprint
arXiv:1801.01078, 2017.

[28] Mohammad Reza Samsami and Hossein Alimadad. Distributed deep reinforce-
ment learning: An overview. arXiv preprint arXiv:2011.11012, 2020.

[29] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp
Moritz. Trust region policy optimization. In International conference on ma-
chine learning, pages 1889–1897. PMLR, 2015.

[30] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347, 2017.

[31] Tian Shi, Yaser Keneshloo, Naren Ramakrishnan, and Chandan K Reddy. Neu-
ral abstractive text summarization with sequence-to-sequence models. ACM
Transactions on Data Science, 2(1):1–37, 2021.

[32] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning
with neural networks. Advances in neural information processing systems, 27,
2014.

[33] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduc-
tion. MIT press, 2018.

[34] Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and
semi-mdps: A framework for temporal abstraction in reinforcement learning.
Artificial intelligence, 112(1-2):181–211, 1999.

[35] Gaurav Tiwari, Arushi Sharma, Aman Sahotra, and Rajiv Kapoor. English-
hindi neural machine translation-lstm seq2seq and convs2s. In 2020 Interna-
tional Conference on Communication and Signal Processing (ICCSP), pages
871–875. IEEE, 2020.

[36] Savvas Varsamopoulos, Koen Bertels, Carmen G Almudever, et al. De-
signing neural network based decoders for surface codes. arXiv preprint
arXiv:1811.12456, 2018.

49

[37] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you
need. Advances in neural information processing systems, 30, 2017.

[38] Lilian Weng. Attention? attention! lilianweng.github.io, 2018. URL https:
//lilianweng.github.io/posts/2018-06-24-attention/.

[39] Lilian Weng. The transformer family. lilianweng.github.io, 2020. URL https://
lilianweng.github.io/posts/2020-04-07-the-transformer-family/.

[40] Catherine Zeng, Jordan Docter, Alexander Amini, Igor Gilitschenski, Ramin
Hasani, and Daniela Rus. Dreaming with transformers. 2022.

50

https://lilianweng.github.io/posts/2018-06-24-attention/
https://lilianweng.github.io/posts/2018-06-24-attention/
https://lilianweng.github.io/posts/2020-04-07-the-transformer-family/
https://lilianweng.github.io/posts/2020-04-07-the-transformer-family/

Appendix

RL and model hyperparameters.
CNN CNN

with
framestacking

CNN
with

LSTM

CNN
with

GtrXL
learning rate α 0.0001 0.0001 0.0005 0.0001
batch size 4096 4096 4096 4096
PPO clip parameter 0.2 0.2 0.1 0.1
gamma γ 0.99 0.99 0.85 0.85
lambda λ 0.95 0.95 0.8 0.8
gradient clip 0.5 0.5 1.0 1.0
nr. of SGD iteration 16 16 16 16
SGD mini batch size 128 128 512 512
entropy coefficient 0.0 0.0 0.0 0.0
frame stacking depth - 5 - -
maximum sequence length - - 64 64
LSTM cell size - - 954 -
nr. of transformer unit - - - 8
attention dimension - - - 128
nr. of heads in MultiHeadAttention - - - 3
head dimension in MultiHeadAttention - - - 128
attention memory size - - - 64
attention MLP output dimension - - - 64
attention GRU gate bias - - - 2.0
nr. of used previous action - - 1 3
nr. of used previous reward - - 1 3

Duckietown environment parameters
seed 1234
episode maximum step 500
domain randomisation False
dynamic randomisation False
frame skip number 1
frame rate 30
accepted start angle 4
camera distortion True

51

	Kivonat
	Abstract
	Introduction
	Background
	Modeling temporal information
	Recurrent Neural Networks
	Vanilla Recurrent Neural Network
	Long-Short Term Memory

	Sequence to sequence
	Trivial case
	General case

	Attention
	Generalize attention mechanism
	Alignment score functions
	Categories of attention mechanisms

	Transformer
	Gated Transformer-XL

	Reinforcement Learning
	Foundations
	Algorithms
	Vanilla Policy Gradient Optimization
	Trust Region Policy Optimization
	Proximal Policy Optimization

	Related work

	Research objectives
	System design
	Duckietown platform
	Software and hardware environment

	Methods and implementation
	Models to compare
	Convolutional Neural Network (CNN) based model
	CNN with frame stacking model
	CNN with LSTM model
	CNN with Transformer model

	Training

	Evaluation and results
	Model complexity
	Driving performance
	Agent trajectories
	Agent velocity
	Accuracy
	Comparison

	Computational demand

	Conclusions
	Summary
	Acknowledgements
	Bibliography
	Appendix

